Gevraagd: \eqalign{\mathop {\lim }\limits_{x \to \infty } \frac{{n^2 \cos \left( n \right)}} {{2^n }}}

\eqalign{ & \mathop {\lim }\limits_{n \to \infty } \frac{{n^2 \cdot \cos (n)}} {{2^n }} \cr & \frac{{ - n^2 }} {{2^n }} \leq \frac{{n^2 \cdot \cos (n)}} {{2^n }} \leq \frac{{n^2 }} {{2^n }} \cr & \mathop {\lim }\limits_{n \to \infty } \frac{{ - n^2 }} {{2^n }} = 0\,\,en\,\,\mathop {\lim }\limits_{n \to \infty } \frac{{n^2 }} {{2^n }} = 0 \cr & \mathop {\lim }\limits_{n \to \infty } \frac{{n^2 \cdot \cos (n)}} {{2^n }} = 0 \cr}