\require{AMSmath} Rekenregels voor machten M1 a^{0}=1 M2 a^{1}=a M3 a^{p}\cdot a^{q}=a^{p+q} M4 a^{p}:a^{q}=a^{p-q} M5 (a^{p})^{q}=a^{p\cdot q} M6 (a\cdot b)^{p}=a^{p}\cdot b^{p} M7 a^{-p}=\frac{1}{a^{p}} M8 a^{\frac{1}{2}}=\sqrt{a} (a\ge 0) M9 \eqalign{& a^{\frac{p}{q}}=\root q\of{a^p }\cr& (a \ge 0) \cr} ©2004-2025 WisFaq
\require{AMSmath}
M1 a^{0}=1 M2 a^{1}=a M3 a^{p}\cdot a^{q}=a^{p+q} M4 a^{p}:a^{q}=a^{p-q} M5 (a^{p})^{q}=a^{p\cdot q} M6 (a\cdot b)^{p}=a^{p}\cdot b^{p} M7 a^{-p}=\frac{1}{a^{p}} M8 a^{\frac{1}{2}}=\sqrt{a} (a\ge 0) M9 \eqalign{& a^{\frac{p}{q}}=\root q\of{a^p }\cr& (a \ge 0) \cr}
M1 a^{0}=1
M2 a^{1}=a
M3 a^{p}\cdot a^{q}=a^{p+q}
M4 a^{p}:a^{q}=a^{p-q}
M5 (a^{p})^{q}=a^{p\cdot q}
M6 (a\cdot b)^{p}=a^{p}\cdot b^{p}
M7 a^{-p}=\frac{1}{a^{p}}
M8 a^{\frac{1}{2}}=\sqrt{a} (a\ge 0)
M9 \eqalign{& a^{\frac{p}{q}}=\root q\of{a^p }\cr& (a \ge 0) \cr}
©2004-2025 WisFaq