Inleiding Analyse Opgave 1.37
Mijn probleem met de volgende vraag is dat ik de theorie van open verzamelingen begrijp maar zodra ik het moet toepassen begrijp ik niks meer, hoe pak ik zo'n vraag aan?
Student universiteit - zondag 11 februari 2024
Antwoord
Als je theorie van de open verzamelingen echt begrijpt weet je dat dit niets met open verzamelingen te maken heeft, maar met niet meer dan de driehoeksongelijkheid in $\mathbb{R}^n$. (OK de vraag tussen haakjes heeft met de definitie van de afstand te maken.)
1. omdat $a\neq b$ is er een $i$ zó dat $a_i\neq b_i$ en dus $$d(a,b)=\sqrt{\sum_{k=1}^n(a_k-b_k)^2}\ge |a_k-b_k| > 0 $$2. Neem $x\in B(a,r_1)\cap B(b,r_2)$, dan geldt dus $d(a,x) < r_1$ en $d(x,b) < r_2$. Pas de driehoeksongelijkheid toe: $$d=d(a,b)\le d(a,x)+d(x,b) < r_1+r_2 $$
kphart
maandag 12 februari 2024
©2004-2024 WisFaq
|