WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Inleiding Analyse Opgave 1.37

Mijn probleem met de volgende vraag is dat ik de theorie van open verzamelingen begrijp maar zodra ik het moet toepassen begrijp ik niks meer, hoe pak ik zo'n vraag aan?

Louis
11-2-2024

Antwoord

Als je theorie van de open verzamelingen echt begrijpt weet je dat dit niets met open verzamelingen te maken heeft, maar met niet meer dan de driehoeksongelijkheid in $\mathbb{R}^n$.
(OK de vraag tussen haakjes heeft met de definitie van de afstand te maken.)

1. omdat $a\neq b$ is er een $i$ zó dat $a_i\neq b_i$ en dus
$$d(a,b)=\sqrt{\sum_{k=1}^n(a_k-b_k)^2}\ge |a_k-b_k| > 0
$$2. Neem $x\in B(a,r_1)\cap B(b,r_2)$, dan geldt dus $d(a,x) < r_1$ en $d(x,b) < r_2$. Pas de driehoeksongelijkheid toe:
$$d=d(a,b)\le d(a,x)+d(x,b) < r_1+r_2
$$

kphart
12-2-2024


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#98066 - Bewijzen - Student universiteit