De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Samengestelde hoeken

Indien een hoek wordt gedefinieerd door een verdraaiing in het horizontale vlak tezamen met een (andere) verdraaiing in het verticale vlak, hoe bereken je dan snel (formule) de waarde van de samengestelde hoek?

maarte
Iets anders - dinsdag 15 april 2003

Antwoord


q9938img1.gif


Stel |OP|=1, dan is |PQ|=tg(a) en |OQ|=1/cos(a).
Daaruit volgt dan weer dat |OR|=1/[cos(a)cos(b)] en |QR|=tg(b)/cos(a).

Gebruik nu Pythagoras in driehoek PQR

|PR|2=|PQ|2+|QR|2

de cosinusregel in driehoek OPR (met g de gevraagde hoek POR)

|PR|2=|OP|2+|OR|2 - 2|OP||OR|cos(g)

en de identiteit

tg2(x) = 1/cos2(x) - 1

en je bekomt de mooie formule

cos(g) = cos(a) cos(b)

Afgaand op het resultaat kon het misschien eenvoudiger...

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 15 april 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3