WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Samengestelde hoeken

Indien een hoek wordt gedefinieerd door een verdraaiing in het horizontale vlak tezamen met een (andere) verdraaiing in het verticale vlak, hoe bereken je dan snel (formule) de waarde van de samengestelde hoek?

maarten renz
15-4-2003

Antwoord


q9938img1.gif


Stel |OP|=1, dan is |PQ|=tg(a) en |OQ|=1/cos(a).
Daaruit volgt dan weer dat |OR|=1/[cos(a)cos(b)] en |QR|=tg(b)/cos(a).

Gebruik nu Pythagoras in driehoek PQR

|PR|2=|PQ|2+|QR|2

de cosinusregel in driehoek OPR (met g de gevraagde hoek POR)

|PR|2=|OP|2+|OR|2 - 2|OP||OR|cos(g)

en de identiteit

tg2(x) = 1/cos2(x) - 1

en je bekomt de mooie formule

cos(g) = cos(a) cos(b)

Afgaand op het resultaat kon het misschien eenvoudiger...

cl
15-4-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#9938 - Goniometrie - Iets anders