De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Inleiding Analyse Opgave 1.37

Mijn probleem met de volgende vraag is dat ik de theorie van open verzamelingen begrijp maar zodra ik het moet toepassen begrijp ik niks meer, hoe pak ik zo'n vraag aan?

Louis
Student universiteit - zondag 11 februari 2024

Antwoord

Als je theorie van de open verzamelingen echt begrijpt weet je dat dit niets met open verzamelingen te maken heeft, maar met niet meer dan de driehoeksongelijkheid in $\mathbb{R}^n$.
(OK de vraag tussen haakjes heeft met de definitie van de afstand te maken.)

1. omdat $a\neq b$ is er een $i$ zó dat $a_i\neq b_i$ en dus
$$d(a,b)=\sqrt{\sum_{k=1}^n(a_k-b_k)^2}\ge |a_k-b_k| > 0
$$2. Neem $x\in B(a,r_1)\cap B(b,r_2)$, dan geldt dus $d(a,x) < r_1$ en $d(x,b) < r_2$. Pas de driehoeksongelijkheid toe:
$$d=d(a,b)\le d(a,x)+d(x,b) < r_1+r_2
$$

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 12 februari 2024



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3