De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Re: Som van kwadraten

 Dit is een reactie op vraag 69128 
Je kunt ook uitgaan van een hypothese: stel de gevraagde formule heeft de gedaante S(n) = a·n3 + b·n2 + c·n + d.

Omdat s(0) = 0, weet je al dat d = 0.

Substitutie van n = 1, 2, 3 geeft met s(1) = 1, s(2) = 5 en s(3) = 14 drie vergelijkingen met de drie onbekenden a, b, c. Oplossen geeft a = 1/3, b = 1/2, c = 1/6.

Verder moet je dan nog bewijzen dat s(n+1) = s(n) + (n+1)2, maar dat is simpel.

Op deze manier kun je ook a, b, en c bepalen wanneer n alleen even of oneven mag zijn.

John
Iets anders - maandag 14 februari 2022

Antwoord

Zeker. Zie ook De rij 1, 4, 9, 16, 25, ...

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 16 februari 2022



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3