WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Re: Re: Som van kwadraten

Je kunt ook uitgaan van een hypothese: stel de gevraagde formule heeft de gedaante S(n) = a·n3 + b·n2 + c·n + d.

Omdat s(0) = 0, weet je al dat d = 0.

Substitutie van n = 1, 2, 3 geeft met s(1) = 1, s(2) = 5 en s(3) = 14 drie vergelijkingen met de drie onbekenden a, b, c. Oplossen geeft a = 1/3, b = 1/2, c = 1/6.

Verder moet je dan nog bewijzen dat s(n+1) = s(n) + (n+1)2, maar dat is simpel.

Op deze manier kun je ook a, b, en c bepalen wanneer n alleen even of oneven mag zijn.

John
14-2-2022

Antwoord

Zeker. Zie ook De rij 1, 4, 9, 16, 25, ...

WvR
16-2-2022


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#93376 - Bewijzen - Iets anders