De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Afgeleide vinden van logaritmische functie

Beste,

Ik ben een oefening aan het maken, maar snap niet hoe je aan de eerste afgeleide komt van de originele functie.

Als ik de formule f'(f/g)=(f'.g+f.g')/g2 daarop toepas kom ik die eerste afgeleide niet uit die daar in de oplossing staat. Ik dacht de afgeleide van lnx gelijk aan 1/x was, maar die zie ik precies nergens terugkomen in de afgeleide.

Zou u dat misschien voor mij kunnen uitleggen?

Alvast bedankt.

Sarah
3de graad ASO - zondag 23 januari 2022

Antwoord

De eerste afgeleide gaat zo:

$
\eqalign{
& f(x) = \frac{{\ln (x) + a}}
{x} \cr
& g(x) = \ln (x) + a \to g'(x) = \frac{1}
{x} \cr
& h(x) = x \to h'(x) = 1 \cr
& f'(x) = \frac{{g' \cdot h - g \cdot h'}}
{{h^2 }} \cr
& f'(x) = \frac{{\frac{1}
{x} \cdot x - \left( {\ln (x) + a} \right) \cdot 1}}
{{x^2 }} \cr
& f'(x) = \frac{{1 - \ln (x) - a}}
{{x^2 }} \cr}
$

Helpt dat?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 23 januari 2022
 Re: Afgeleide vinden van logaritmische functie 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3