De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Element onderdeel van een lichaamring

Verzameling met a+b√2, met a,b element van Q. Heeft de gebruikelijke optellingen en vermenigvuldigingen van reële getallen.
  1. Bewijs dat √3 geen element is van deze verzameling.
  2. Onderzoek of 3√2 element is van deze verzameling.

Jurjen
Student hbo - zondag 22 november 2020

Antwoord

Hallo Jurjen,

Graag wil ik je wijzen op de spelregels, met het verzoek volgende keer nota te nemen van regel 8. Voor deze keer zal ik je op weg proberen te helpen.

a. Stel dat $a+b\sqrt{2}=\sqrt{3}$ dan zou $a^2+2\sqrt{2}ab+b^2=3$. Daarmee kun je $\sqrt{2}$ uitdrukken in $a$ en $b$, zodanig dat het zou betekenen dat $\sqrt{2}\in \mathbb{Q}$.

b. Op vergelijkbare manier zou $(a+b\sqrt{2})^3=2$ moeten zijn en dat zou ook betekenen dat $\sqrt{2}\in \mathbb{Q}$.

Met vriendelijke groet,

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 22 november 2020



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3