De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||
|
\require{AMSmath}
Een lineaire deelruimte als nulruimte van een matrixKlopt het dat alle (eindig dimensionale) lineaire deelruimten van de $\mathbf{R}^n$ geschreven kunnen worden als een nulruimte van een of andere matrix A? Met andere woorden, als U een lineaire deelruimte is, geldt er dan altijd dat er een matrix M bestaat zodat U precies uit die vectoren x bestaat met Ax = 0? Zo ja, hoe bewijs ik deze statement. AntwoordBeste Jan,
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|