|
|
\require{AMSmath}
Oppervlakte van een skatebaan
Een skatebaan bestaat uit een rechthoek en 2 kwart cilinders. De lengte van de baan is 120 dm, de breedte is 60 dm en de hoogte is 30 dm. De vraag is wat de oppervlakte van de baan is.
Ik heb dat als volgt gedaan: de straal van de kwartcirkels is 30 dm. Dus de oppervlakte is $\pi$ · 302 / 2 = 1413,716694 De oppervlakte van de cilindermantel is: diameter · $\pi$ · hoogte. Dus 60 · $\pi$ · 30 = 5654,866776. Totale oppervlakte is dan: 7068,58347 dm2. Het antwoordenboekje komt uit op 9254,86.
Ik kom hier op eigen kracht niet uit. Welke denkfout maak ik?
Joost
Iets anders - zondag 13 oktober 2019
Antwoord
Waarom reken je de oppervlakte van de kwartcirkels uit? Die zitten aan de zijkant en maken geen deel uit van het schaatsoppervlak. Als ik de vraag goed lees is het vlakke gedeelte $60\times60\,\mathrm{dm}^2$: aan beide uiteinden gebruik je $30\,\mathrm{dm}$ van de $120$ voor de kwartcilinders, er blijft dus $60\,\mathrm{dm}$ over. Bij elkaar: het vierkant en twee kwart cilinders. Dat wordt $3600\,\mathrm{dm}^2$ voor het vierkant en tweemaal $\frac12\pi\cdot30\cdot60$. (En, inderdaad: $5654 + 3600 = 9254$.)
kphart
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 13 oktober 2019
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|