De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Poolvergelijking ellips

 Dit is een reactie op vraag 87244 
ik heb als integraal:
2(1+t2) / [(1+e)+(1-e)t2 ]2 dt
Niet gelijkwaardig met de uwe.
Heeft u nog een hint?

Herman
Ouder - zondag 6 januari 2019

Antwoord

We begonnen met
$$
\int\frac1{1+a\cos x}\,\mathrm{d}x
$$(is die $a$ ineens $e$ geworden?).
De substitutie $t=\tan\frac x2$, ofwel $x=2\arctan t$, levert
$$
\cos x=\frac{1-t^2}{1+t^2}
$$en
$$
\mathrm{d}x=\frac2{1+t^2}\,\mathrm{d}t
$$Er komt dus
$$
\int\frac1{1+a\cos x}\,\mathrm{d}x = \int\frac1{1+a\frac{1-t^2}{1+t^2}} \cdot \frac2{1+t^2}\,\mathrm{d}t
$$Nu netjes vereenvoudigen.

Ik zie niet waar jouw uitwerking vandaan komt.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 7 januari 2019
 Re: Re: Poolvergelijking ellips 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3