De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Span

 Dit is een reactie op vraag 86995 
De context ging om de eigenruimte als de oplossing cx is met c$\in$R.

Ik heb nog een vraag, als g(x) de functie is die behoort tot ruimte van reele continue functies op het interval [0,1] (en het is een inner product space) , wat houdt het dan in om span{g} te zeggen? Is dat dan ook cg met c$\in$R?

(context: Dit moet ik gebruiken om de afstand tussen L(f) en span(g) te bepalen waarbij L(f) een lineaire integraaloperator is op een functie f(x).)

Hopelijk is de vraag te volgen anders kan ik wel een foto van de opgave bijvoegen.

Harold
Student universiteit - woensdag 24 oktober 2018

Antwoord

De span(g) is de vectorruimte die bestaat uit alle vectoren die te schrijven zijn als een veelvoud van g.
Hoe je de afstand tussen een vectorruimte en een Integraaloperator berekent weet ik niet en ik vermoed dat je de vraag verkeerd geformuleerd hebt.

js2
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 24 oktober 2018



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3