De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Inverse functie van exponentiële functies en andersom

Gegeven is de functie f: x2x-1. Wat is de inverse functie hiervan? Ik weet dat de inverse van machtsverheffen worteltrekken is maar toch weet ik niet hoe dit toe te passen op deze functie. Hetzelfde probleem heb ik met de functie g(x)=2+3log(x-1). Ook hier weet ik niet hoe de inverse te berekenen. Kunt u mij helpen? Ik weet dat het beter als ik laat zien hoever ik kom maar weet gewoon niet hoe te werk gaan.

M.d.v.G

wouter
Iets anders - zaterdag 15 maart 2003

Antwoord

De inverse functie van 2x is niet worteltrekken maar logaritmen! Je bent waarschijnlijk even in de war met machtfuncties zoals x4, daarvan is de inverse inderdaad 4x. Functies als 2x noemen we exponentiële functies en dat is een hele andere wereld!

Voorbeeld
f(x)=2x-1
Denk maar aan een rekenschema:

q8576img1.gif

Dus als je de rol van x en y omwisselt:
f(x)=2log(x)+1

Voorbeeld
f(x)=2+3log(x-1)
Rekenschema:

q8576img2.gif

Ook weer even de x en y verwisselen:
f(x)=3x-2+1

Als je goed kijkt, zie je misschien dat je het rekenschema ook kan gebruiken om 'x' uit te rekenen als je 'y' weet. Dus bijvoorbeeld bij het laatste voorbeeld:

Los op:
2+3log(x-1)=3
Met het rekenschema weet je meteen:
x=33-2+1=3+1=4

Dus onthouden! De inverse van f(x)=ax is f(x)=alog(x) en andersom...

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 16 maart 2003
 Re: Inverse functie van exponentiële functies en andersom 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3