De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bepaal de rest van de veelterm

De veeltermen f(x) en g(x) zijn veeltermen met reële coëfficiënten. De veelterm f(x) heeft bij deling door x2-1 rest x+1 en de veelterm g(x) heeft bij deling door x2−1 rest x−1. Welke rest heeft de veelterm f(x)+g(x) bij deling door x+1?

Manu V
Student universiteit België - vrijdag 27 oktober 2017

Antwoord

Hallo, Manu.

Uit de gegevens blijkt dat er veeltermen h(x) en j(x) met reële coëfficiënten bestaan zodat

f(x) = (x2-1)h(x) + x+1 en
g(x) = (x2-1)j(x) + x-1, dus

f(x) + g(x) = (x2-1)(h(x)+j(x)) + 2x =
= (x+1)k(x) + 2x met k(x) = (x-1)(h(x)+j(x)).

Dus ...
nee, wacht even, nog even verder delen ...
Kun je het afmaken?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 27 oktober 2017
 Re: Bepaal de rest van de veelterm 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3