De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||||
|
\require{AMSmath}
Re: Standaard deviatie uit covariantiematrix
Die oplossing is duidelijk en had ik ook al maar, hoe bepaal if sigma H en sigma b uit de covariantie matrix. AntwoordJe zin "Als je dit stelsel oplost $(A^tA)^{-1}$ houdt je de covariantie matrix over..." verdient niet de schoonheidsprijs. Als het stelsel oplost krijg je in eerste instantie benaderingen voor $H\cos b$ en $H\sin b$; je moet extra werk doen voor de varianties (die kwadraten van standaarddeviaties zijn de varianties). Met behulp van die matrix is, denk ik, nog wel iets te zeggen over de variantie van $H$, via $(H\cos b)^2+(H\sin b)^2=H^2$ en de formules voor varianties van sommen van uitkomsten. De variantie van $b$ en zelfs die van $\cos b$ en $\sin b$ lijken me een stuk lastiger: ik ken geen formules, die een variantie van een quotient in de varianties van teller en noemer uitdrukt, en al helemaal niet hoe je de variantie van $b$ uit die van $\cos b$ haalt.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|