Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 85152 

Re: Standaard deviatie uit covariantiematrix

Die oplossing is duidelijk en had ik ook al maar, hoe bepaal if sigma H en sigma b uit de covariantie matrix.

Arnold
Student hbo - donderdag 26 oktober 2017

Antwoord

Je zin "Als je dit stelsel oplost $(A^tA)^{-1}$ houdt je de covariantie matrix over..." verdient niet de schoonheidsprijs. Als het stelsel oplost krijg je in eerste instantie benaderingen voor $H\cos b$ en $H\sin b$; je moet extra werk doen voor de varianties (die kwadraten van standaarddeviaties zijn de varianties). Met behulp van die matrix is, denk ik, nog wel iets te zeggen over de variantie van $H$, via $(H\cos b)^2+(H\sin b)^2=H^2$ en de formules voor varianties van sommen van uitkomsten. De variantie van $b$ en zelfs die van $\cos b$ en $\sin b$ lijken me een stuk lastiger: ik ken geen formules, die een variantie van een quotient in de varianties van teller en noemer uitdrukt, en al helemaal niet hoe je de variantie van $b$ uit die van $\cos b$ haalt.

kphart
donderdag 26 oktober 2017

 Re: Re: Standaard deviatie uit covariantiematrix 

©2001-2024 WisFaq