De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Limieten en differentiaalrekening

Beste,

Ik moet bij een opgave bepalen waar de functie discontinu is, dit aangeven en het type discontinuïteit aanduiden.

Hoe kan ik dit aan pakken bij de volgende functie?

$
f(x) = \left\{ {\begin{array}{*{20}c}
{\eqalign{\frac{{x^2 - 9}}{{x - 3}}}} & {voor\,\,x \ne 3} \\
6 & {voor\,\,x = 3} \\
\end{array}} \right.
$

mvg

stefan
Student hbo - zaterdag 7 november 2015

Antwoord

$
\begin{array}{l}
f(x) = \left\{ {\begin{array}{*{20}c}
{\eqalign{\frac{{x^2 - 9}}{{x - 3}}}} & {voor\,\,x \ne 3} \\
6 & {voor\,\,x = 3} \\
\end{array}} \right. \\
f(x) = \left\{ {\begin{array}{*{20}c}
{\eqalign{\frac{{\left( {x + 3} \right)(x - 3)}}{{x - 3}}}} & {voor\,\,x \ne 3} \\
6 & {voor\,\,x = 3} \\
\end{array}} \right. \\
f(x) = \left\{ {\begin{array}{*{20}c}
{x + 3} & {voor\,\,x \ne 3} \\
6 & {voor\,\,x = 3} \\
\end{array}} \right. \\
f(x) = x + 3 \\
\end{array}
$

Conclusie?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 7 november 2015



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3