De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Teken domein

Gegeven is van een verzameling driehoeken ABC dat AB=x+2, BC=2x en AC=y. Verder geldt in alle gevallen dat AC de korste zijde is en dat BC de langste zijde is. De omtrek van de driehoek ABC is een functie f met de extra beperking dat x+y 8. Als laatste voorwaarde is nog gegeven dat
x-2yx+2. Gevraagd wordt het domein van f te te tekenen. Ik ben van het volgende uit gegaan
x-2=y
y=x+2
x+y=8

Wanneer ik deze lijnen zou tekenen krijg ik geen gesloten domein. Eerlijk gezegd weet ik niet wat te doen en tast wat in het donker wat nu te doen, kunt u mij helpen wat de bedoeling is?

M.d.v.G

wouter
Iets anders - vrijdag 14 februari 2003

Antwoord

Uit de gegevens volgt direct dat:
x > 0 en y > 0.
Verder ook (omdat AC de kleinste zijde is):
y < 2x en y < x + 2
Uit de verder gegevens vinden we dan nog:
x - 2 < y en x + y < 8
De lijnen
x = 0 (y-as), y = 0 (x-as), y=2x, y=x+2, y=x-2, x+y=8
zijn in onderstaande figuur weergegeven.
Er is zogenoemde 'complementsarcering' toegepast (gearceerd is 'wat niet is toegestaan').
Er is dus wel degelijk sprake van een 'gesloten' domein voor de functie f(x,y) = 3x + y + 2.

q7547img1.gif

In de figuur is geen rekening gehouden met het feit dat BC de grootste zijde is (2x>x+2).De lijn x=2 moet je dan zelf nog maar tekenen (met de juiste arcering).

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 14 februari 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3