De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||
|
\require{AMSmath}
GroepentheorieBeste AntwoordDe aanname dat $x^ny^n=(xy)^n$ voor alle $x$ en $y$ impliceert dat $g\mapsto g^n$ een homomorfisme van $G$ naar $G$ is, de verzameling $G_n$ is daar de kern van, dus een normale ondergroep van $G$, het beeld is $G^n$ en dat is dan ook een ondergroep, zelfs een normaaldeler. Dat laatste bewijs je inderdaad door aan te tonen dat $hG^n=G^nh$ voor alle $h$. Daarvoor kun je het beste nagaan dat $hg^n = (hgh^{-1})^nh$ voor alle $g$ en $h$.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|