WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Groepentheorie

Beste

Zou iemand me kunnen uitleggen hoe we een verzameling definiëren? Bvb. Gn= {g € G| g^n = 1 } en G^N = {g^n |g €G}.
Ik zou ook moeten aantonen dat deze normaal groepen zijn. Dat moet ik doen door aan te tonen dat linker- en rechternevenklassen gelijk zijn? Of is dat niet waar?
We weten hiervoor dat G een groep is en (xy)^n=x^ny^n voor een vaste n €. x,y zijn ook elementen van G.
Uiteindelijk moeten we hier aantonen dat | G^n| = [G : Gn]
Kan iemand me op weg helpen?
Alstublieft?
Alvast bedankt

Steffi Losfeld
2-4-2015

Antwoord

De aanname dat $x^ny^n=(xy)^n$ voor alle $x$ en $y$ impliceert dat $g\mapsto g^n$ een homomorfisme van $G$ naar $G$ is, de verzameling $G_n$ is daar de kern van, dus een normale ondergroep van $G$, het beeld is $G^n$ en dat is dan ook een ondergroep, zelfs een normaaldeler. Dat laatste bewijs je inderdaad door aan te tonen dat $hG^n=G^nh$ voor alle $h$. Daarvoor kun je het beste nagaan dat $hg^n = (hgh^{-1})^nh$ voor alle $g$ en $h$.
Tenslotte: uit de eerste isomorfiestelling volgt dat $G^n$ en $G/G_n$ isomorf zijn.

kphart
3-4-2015


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#75327 - Verzamelingen - Student universiteit België