De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Afgekapte normale verdeling: hoe verwachtingswaarde bepalen

Stel ik heb een standaard normaal verdeeld rendement.
m = 4%.
s = 3%.
Er geldt een garantie regeling. Als het rendement lager dan 0% is, is het resultaat 0% rendement.
Wat is de verwachtingswaarde van het rendement?
Is deze integraal analytisch oplosbaar?

Robber
Student hbo - dinsdag 17 februari 2015

Antwoord

Als ik je vraag goed interpreteer gaat het om
$$
\frac1{3\sqrt{2\pi}}\int_0^\infty x e^{-\frac12\left(\frac{x-4}3\right)^2}\,\mathrm{d}x
$$
Je kunt de substitutie $u=\frac{x-4}{3}$ uitvoeren; dan krijg je
$$
\frac1{\sqrt{2\pi}}\int_{-\frac43}^\infty(4+3u)e^{-\frac12u^2}\,\mathrm{d}u
$$
Het gedeelte
$$
\frac1{\sqrt{2\pi}}\int_{-\frac43}^\infty 4e^{-\frac12u^2}\,\mathrm{d}u
$$
is niet analytisch te doen, de andere term gaat zonder problemen en geeft $\frac3{\sqrt{2\pi}}e^{-\frac89}$.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 18 februari 2015



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3