De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Goniometrische vergelijking

Goedenavond allemaal,

Ik kreeg een vraag van een vriend van me. Hij wil de volgende vergelijking oplossen, maar hij kwam er niet uit.

cos(2$\pi$t) = cos(1/6$\pi$t)
  • Bepaal de snijpunten tussen t = 0 en t = 3
Nu ben ik er eens voor gaan zitten maar ik kom er ook niet uit. Ik snap echt niet de aanpak om dit op te lossen.

Ik heb als eerste geprobeerd:
  • 2$\pi$t = 1/6$\pi$t
Dit oplossen geeft totaal niet wat volgens Wolframalpha de 6 oplossingen moeten zijn. Vervolgens heb ik geprobeerd om het volledig algebraisch op te lossen dus door de trigoniometrische functies toe te passen. Die cos(2$\pi$t) heb ik tijdelijk geschreven als cos(2t) = 2cos2(t)-1. Op deze manier liep ik ook vast omdat ik niets met die cos(1/6$\pi$t) kan doen.

Heeft iemand van jullie een idee hoe ik dit aan kan pakken?
Hartelijk dank alvast.

Jan
Student universiteit - donderdag 12 februari 2015

Antwoord

Hallo Jan,

Jouw eerste poging is wel goed, maar niet volledig:

Uit cos(2$\pi$t) = cos(1/6$\pi$t) volgt als eerste mogelijkheid:

2$\pi$t = 1/6$\pi$t + k×2$\pi$

Hierin is k een geheel getal. De term k×2$\pi$ geeft aan dat het argument van de cosinus ook een geheel aantal periodes groter of kleiner mag zijn. Immers, een cosinusfunctie is periodiek: na een geheel aantal periodes kom je op dezelfde waarde uit.

Uitwerken van deze vergelijking levert:

12t = t + 12k
11t = 12k
t = 12/11k

ofwel: t is een geheel aantal keer 12/11

Daarnaast is er nog een tweede mogelijkheid: omdat geldt:
cos(A) = cos(-A) kan ook:

2$\pi$t = -1/6$\pi$t + k×2$\pi$

12t = -t + 12k
13t = 12k
t = 12/13k

We vinden dus als oplossingen:

t = 12/11k of t = 12/13k

OK zo?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 12 februari 2015



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3