De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Re: Re: De gerichte limiet van een verzameling
Er geldt dat f_ij=0 als i=j. Dus alle elementen van A worden op de triviale vectorruimte afgebeeld. Dus a~b voor alle elementen. Dus U/~ bestaat uit alle elementen van A. Dus de directe limiet is A. Is dit juist? AntwoordDat moet je beter formuleren: $f_{i,j}$ is de nulafbeelding; elk element van een $A_i$ heeft oneindig veel verschillende beelden: $(0,j)$, voor $j\ge i$. Omdat geldt $(v,i)\sim(w,j)$ voor alle punten, bestaat $U/{\sim}$ uit één equivalentieklasse; de directe limiet is dus de triviale vectorrruimte.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|