De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Een logaritmische vergelijking oplossen

Kan iemand hier aub op reageren?
Hoe moet ik deze vergelijking oplossen? Ik loop helemaal vast.
2+3·-2log(x+4) $\le$ 11

Hans
Ouder - dinsdag 8 juli 2014

Antwoord

Het oplossen van deze ongelijkheid gaat zo:

$
\begin{array}{l}
{\rm{2 + 3\cdot - 2log(x + 4)}} \le {\rm{11}} \\
{\rm{3\cdot - 2log(x + 4)}} \le 9 \\
{\rm{ - 2log(x + 4)}} \le 3 \\
{\rm{log(x + 4)}} \ge - 1\frac{1}{2} \\
x + 4 \ge 10^{ - 1\frac{1}{2}} \\
x + 4 \ge \frac{1}{{10^{1\frac{1}{2}} }} \\
x + 4 \ge \frac{1}{{10\sqrt {10} }} \\
x \ge \frac{1}{{10\sqrt {10} }} - 4 \\
x \ge \frac{{\sqrt {10} }}{{100}} - 4 \\
\end{array}
$

Helpt dat?

Zie ook Rekenregels voor logaritmen

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 8 juli 2014



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3