De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

kan dit ook zonder hyperbolische ?

hoi , jan hier terug , terugkomend op integreer sqrt(x^2 + a^2) met partiële integratie

hyperbolische ( sh ... ) hebben wij nog niet gezien , dus je zou het moete kunnen uitvoeren met een pure partiële integratie

ik vermoed iets van de aard ( x^2 + a^2 )^(-1/2) ...
maar ik raak telkens vast in die berekening ,
alvast bedankt , ook voor het vorige antwoord , maar aangezien ik dat nog niet gezien heb , zou je het ook op een meer beschaafdere wijzen moeten kunnen uitvoeren ...
het enige probleem is , dat ik niet weet hoe .

alvast bedankt
jan

jan
3de graad ASO - woensdag 5 februari 2003

Antwoord

Laten we integraal I noemen.

I = ̣(x2 + a2)dx = x(x2 + a2) - ̣x.d(x2 + a2) = x(x2 + a2) - ̣x2/(x2 + a2)dx.

Als je voor de teller van de integrand nu schrijft x2 + a2 - a2, dan valt deze integraal uiteen in het volgende:

̣[(x2 + a2) - a2/(x2 + a2)]dx.

Hierin zit precies weer de begin-integraal I verscholen. Door deze I nu naar links te verplaatsen, krijg je het volgende totaalplaatje:

2I = x(x2 + a2) + ̣a2/(x2 + a2)dx

Deze laatste integraal is een. neem ik aan, bekende. Hij levert op: a2.ln(x + (x2 + a2))

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 6 februari 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3