hoi , jan hier terug , terugkomend op integreer sqrt(x^2 + a^2) met partiële integratie
hyperbolische ( sh ... ) hebben wij nog niet gezien , dus je zou het moete kunnen uitvoeren met een pure partiële integratie
ik vermoed iets van de aard ( x^2 + a^2 )^(-1/2) ...
maar ik raak telkens vast in die berekening ,
alvast bedankt , ook voor het vorige antwoord , maar aangezien ik dat nog niet gezien heb , zou je het ook op een meer beschaafdere wijzen moeten kunnen uitvoeren ...
het enige probleem is , dat ik niet weet hoe .
alvast bedankt
jan
jan
5-2-2003
Laten we integraal I noemen.
I = ̣(x2 + a2)dx = x(x2 + a2) - ̣x.d(x2 + a2) = x(x2 + a2) - ̣x2/(x2 + a2)dx.
Als je voor de teller van de integrand nu schrijft x2 + a2 - a2, dan valt deze integraal uiteen in het volgende:
̣[(x2 + a2) - a2/(x2 + a2)]dx.
Hierin zit precies weer de begin-integraal I verscholen. Door deze I nu naar links te verplaatsen, krijg je het volgende totaalplaatje:
2I = x(x2 + a2) + ̣a2/(x2 + a2)dx
Deze laatste integraal is een. neem ik aan, bekende. Hij levert op: a2.ln(x + (x2 + a2))
MBL
6-2-2003
#7276 - Integreren - 3de graad ASO