|
|
\require{AMSmath}
Rangnummerformule
Beste allemaal, Ik heb een vraag over het volgende. Gegeven is de verschilrij vn = 12, 20, 28, 36 Nu moet ik een rangnummerformule geven voor un. Ik kan de eerste stappen, maar ik loop vast. Hoe ik tewerk ben gegaan: Rangnummerformule voor vn = 12 + (n-1) + 8 = 8n + 4 Recurrentebetrekking voor un = un-1 + vn met u1 = -296 Hoe maak ik hier dan een rangnummerformule van? Graag hulp! Gr, Klaas
Klaas
Leerling bovenbouw havo-vwo - donderdag 28 november 2013
Antwoord
Veronderstel eens even dat u1=4 (i.p.v. -296), dan: u1=4=4·12 u2=4+12=16=4·22 u3=16+20=36=4·32 u4=36+28=64=4·42 u5=64+36=100=4·52 Dan zou de rangnummerformule voor un zijn: un=4n2, toch? Dus nu is het 4n2+x met 4·12+x=-296, dus x=-296-4=-300 Dus de formule is un=4n2-300.
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 28 november 2013
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|