De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Rekenkundig bewijs voor de methode van Van der Blij

 Dit is een reactie op vraag 11233 
Ik doe mijn profielwerkstuk over magische vierkanten en probeer dit bewijs in simpele woorden erin mee te nemen. Maar ik begrijp niet waarom bij de kolommen er n +(1/2n·(n-1)(n+1)) uit n+(1+2+..+(n-1))·(n+1)

Erik
Leerling bovenbouw havo-vwo - vrijdag 4 oktober 2013

Antwoord

't Is een bekende reeks:
1 + 2 + ... + (n-1) = 1/2n(n-1)

Hoe kan je dat zien?
Noem de uitkomst van de reeks $S$ en zet de reeks en de reeks in omgekeerde volgorde onder elkaar en tel ze op:
S =   1  +  2  +  3  + ... +(n-3)+(n-2)+(n-1)
S = (n-1)+(x-2)+(n-3)+ ... + 3 + 2 + 1
--------------------------------------------
2S = n + n + n + ... + n + n + n
Oftewel:
2S = n(n-1)
S = 1/2n(n-1)

Vandaar!
Zoiets?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 9 oktober 2013



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3