De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

De afgeleide met een macht kleiner dan één

Ik geef sinds kort bijles en mijn leerlingen en ik komen niet uit de volgende vraag (moderne wiskunde VWO 6 C - hfst 1 vr 14)
Bij de verkoop van een product wordt de totale winst berekend met de formule (q = gewicht product): TW(q)=30q-100-q1,6. Bereken met behulp van de afgeleide voor welke q de totale winst maximaal is.
Uit een eerdere vraag, waarbij de GR gebruikt mocht worden, is al gebleken dat het antwoord 132 is. Nu is echter de bedoeling het antwoord te vinden zonder GR. Hoe ziet de berekening er uit?

Merel
Iets anders - zondag 15 september 2013

Antwoord

Beste Merel,

We zullen eens een poging doen.

$
\begin{array}{l}
T = 30q - q^{1,6} - 100 \\
T' = 30 - 1,6q^{\frac{6}{{10}}} \\
\end{array}
$

We hebben dus de totale winst T als formule in q uitgedrukt. Er treedt een maximum op als de helling is 0. Kortom als de afgeleide T'=0

$
\begin{array}{l}
30 - 1,6q^{\frac{6}{{10}}} = 0 \\
1,6q^{\frac{6}{{10}}} = 30 \\
q^{\frac{6}{{10}}} = 18,75 \\
q^{(\frac{6}{{10}})^{(\frac{{10}}{6})} } = q = 18,75^{\frac{{10}}{6}} = 132,33 \\
\end{array}
$

Kun je zo verder?

mvg DvL

DvL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 15 september 2013
 Re: De afgeleide met een macht kleiner dan één 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3