|
|
\require{AMSmath}
Eigenwaarde matrix met alfa erin
Hallo, ik moet de eigenwaarde(n) berekenen van de volgende matrix: 1 -a2+a-2 0 1 2a-1 a-1 0 4 1 Ik weet echt niet hoe ik dit moet aanpakken. Ik heb de eigenwaardevergelijking opgesteld door bij de diagonalen -l te doen, en de determinant gelijk te stellen aan 0. Als ik dit echter wil oplossen, krijg ik echt een onmogelijke vergelijking. Ik hoop dat iemand mij kan helpen!
Emma
Student universiteit - zondag 6 januari 2013
Antwoord
Je schrijft dat je de elementen op de diagonalen hebt vermeerderd met -t, maar ik neem aan dat je dit alleen op de hoofddiagonaal hebt gedaan! Maar de uitwerking van de determinant om het karakteristieke polynoom te vinden, is inderdaad geen feest. Je zou dit moeten krijgen: 5 - 3 a + a2 - 5 t + a t - a2 t + t2 + 2 a t2 - t3 Eén van de t-waarden die nul oplevert blijkt t = 1 te zijn (je moet het maar zien!) zodat een deling door t-1 mogelijk is. Die deling levert op: (1 - t) (5 - 3 a + a2 - 2 a t + t2). Nulstelling levert drie t-waarden op: t = 1 en t = a - √[-5 + 3 a] en t = a + √[-5 + 3 a]
MBL
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 6 januari 2013
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|