Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Eigenwaarde matrix met alfa erin

Hallo, ik moet de eigenwaarde(n) berekenen van de volgende matrix:
1 -a2+a-2 0
1 2a-1 a-1
0 4 1

Ik weet echt niet hoe ik dit moet aanpakken. Ik heb de eigenwaardevergelijking opgesteld door bij de diagonalen -l te doen, en de determinant gelijk te stellen aan 0. Als ik dit echter wil oplossen, krijg ik echt een onmogelijke vergelijking. Ik hoop dat iemand mij kan helpen!

Emma
Student universiteit - zondag 6 januari 2013

Antwoord

Je schrijft dat je de elementen op de diagonalen hebt vermeerderd met -t, maar ik neem aan dat je dit alleen op de hoofddiagonaal hebt gedaan!
Maar de uitwerking van de determinant om het karakteristieke polynoom te vinden, is inderdaad geen feest.
Je zou dit moeten krijgen:
5 - 3 a + a2 - 5 t + a t - a2 t + t2 + 2 a t2 - t3
Eén van de t-waarden die nul oplevert blijkt t = 1 te zijn (je moet het maar zien!) zodat een deling door t-1 mogelijk is. Die deling levert op:
(1 - t) (5 - 3 a + a2 - 2 a t + t2).
Nulstelling levert drie t-waarden op:
t = 1 en t = a - √[-5 + 3 a] en t = a + √[-5 + 3 a]

MBL
zondag 6 januari 2013

 Re: Eigenwaarde matrix met alfa erin 

©2001-2024 WisFaq