De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Limiet bepalen

Ik kom niet uit deze vraag.
Zij f: R-- R een functie met afgeleide f'(3) = -2 Bereken de limiet.
lim      (f(3+8h) - f(3))
h- 0 ----------------
h
Alvast bedankt.

Kim
Student hbo - zaterdag 15 september 2012

Antwoord

Beste Kim (of was het Tim?),

Als h naar 0 gaat, gaat ook 8h naar 0. Met een trucje kan je de definitie voor de afgeleide in x = 3 in deze uitdrukking krijgen door teller en noemer met 8 te vermenigvuldigen:
$$\frac{f(3+8h)-f(3)}{h} = \frac{f(3+8h)-f(3)}{8h}\cdot 8$$Dan de limiet nemen geeft:
$$\lim_{h \to 0} \left( \frac{f(3+8h)-f(3)}{8h}\cdot 8 \right) = \underbrace{\lim_{h \to 0} \frac{f(3+8h)-f(3)}{8h}}_{f\,'(3)} \cdot \lim_{h \to 0} 8$$Eventueel stel je t = 8h om de definitie expliciet in de 'goede vorm' te krijgen. Lukt het zo?

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 15 september 2012
 Re: Limiet bepalen 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3