De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Exponentiëel functievoorschrift

 Dit is een reactie op vraag 68044 
Hallo,

Ondertussen heb ik deze formule ook ontdekt.
Toch kom ik niet tot een uitkomst. Hoe kan ik de formule toepassen op het vraagstuk g(1)=20 en g(3)=12?

Kyra v
Student hbo - vrijdag 27 juli 2012

Antwoord

Als je de gegeven invult in het algemene functievoorschrift dan krijg je een stelsel van twee vergelijkingen met twee onbekenden. Als je dat stelsel oplost weet je de waarden van $a$ en $b$.

$
\begin{array}{l}
\left\{ \begin{array}{l}
20 = b \cdot g^1 \\
12 = b \cdot g^3 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
20 = b \cdot g \\
12 = b \cdot g^3 \\
\end{array} \right. \\
\end{array}
$

Zou dat lukken?

Een andere manier om eerst $g$ te berekenen: als $t$ toeneemt van $t=1$ naar $t=3$ neemt $g$ af van $20$ tot $12$. Dus $g^{2}=\large\frac{12}{20}$, zodat $g = \large\frac{{\sqrt {15} }}{5}$.

Invullen in $20=b\cdot\large\frac{{\sqrt {15} }}{5}$ vind je dan $b$.

Zie ook exponentiële groei en groeifactoren

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 27 juli 2012



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3