De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Re: Re: Bewijzen dat een limiet niet bestaat
Bedankt. Ik heb al verschillende paden gevonden die verschillende limietwaarden leveren: Lim(x,y)-(0,b) f(x,y)=1 en Lim(x,y)-(a,0) f(x,y)=0. Duiden op eenduidigheid van de limiet voor limietpunt (0,0) waaraan niet wordt voldaan zou toch genoeg moeten zijn? Is het mogelijk het niet bestaan van de limiet te bewijzen mbv de definitie van de limiet? Stellen dat Lim(x,y)-(0,0)f(x,y)=/L voor een willekeurige L. AntwoordInderdaad: neem aan dat de limiet bestaat en neem epsilon=1/3.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|