De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Continuïteit en limieten van functies

hoi, ik heb eens gekeken op deze website, maar niet echt een antwoord gevonden rond mijn volgende vraag.
hoe kan men eigenlijk met behulp van de definitie van continuïteit aantonen dat de functie ¦:$\mathbf{R}$0$\to\mathbf{R}$: x$\to$[1/X]

volgende stappen heb ik al gedaan, maar ik geraak niet echt verder tot een bewijs:

stap 1: Neem een willekeurige a $\in\mathbf{R}$ en willekeurige rij (Xk) met k $\in\mathbf{N}$ in $\mathbf{R}$ die convergeert naar a.

we weten dat lim Xk= a
lim f(Xk)= lim (1/Xk)
= 1/a??

Een tweede vraag waar ik niet weet hoe ik eraan moet beginnen of dit op te lossen is als volgt:
toon aan dat functie niet continu is in 0
g:$\mathbf{R}\to\mathbf{R}$:x$\to$ [x als x$\leq$0] en 1 als x $>$ 0


B.
Student universiteit - donderdag 3 maart 2011

Antwoord

Ik zou eens kijken naar |1/a-1/xn| en proberen dat te relateren aan |a-xn|. Er geldt |1/a-1/xn|=|a-xn|/|axn|; de bedoeling is nu de vatiabele xn in de noemer door iets constants t vervangen en zo te kunnen laten zien dat de 1/xn naar 1/a convergeren. Hier gebruik je dat limnxn=a: er is een N zó dat |x-a||a|/2 voor nN. Dan volgt dat 1/|axn|2/|a|2 voor nN en dus |1/a-1/xn|2|a-xn|/|a|2 voor die n.
Dankzij deze afschatting volgt nu dat limn1/xn=1/a.

Wat je tweede vrag betreft: kijk eens naar de rij 1/n en zijn functiewaarden.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 4 maart 2011



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3