De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Kegelsneden en krommen: parabool

F is het brandpunt van P-y2=2px. De loodlijn l in F op de as van de parabool snijdt P in Q en R. De normaal in Q snijdt P een tweede keer in S. Bewijs dat de raaklijn in Q, de evenwijdige door R aan de x-as en de raaklijn in S door één punt gaan.

ik weet echt niet hoe te beginnen aan deze vraag...
Kan iemand helpen aub?
ik maakte al een tekening maar ik kan deze hier jammer genoeg niet invoegen

Tim B.
3de graad ASO - woensdag 17 november 2010

Antwoord

2) Tim,
Ik zal een begin geven: Omdat F(p,0) is Q(p,pÖ en R(p,-pÖ2).
Daar y'(x)=p/y, is rico raaklijn in Q gelijk aan p/(pÖ2)=1/2Ö2, zodat de rico normaal door Q gelijk is aan -Ö2. De vergelijking van de normaal door Q is dus y=pÖ2-Ö2(x-p). Deze normaal snijden met de parabool geeft de coordinaten van S(4p,-2pÖ2). Nu zelf maar aan de slag.

kn
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 17 november 2010
 Re: Kegelsneden en krommen: parabool 
 Re: Kegelsneden en krommen: parabool 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3