De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Differentieren natuurlijke logaritme

Hallo,

Ik heb problemen met het vinden van de afgeleide van de volgende formule:
f(x)= x3ln(3x)
Ik kom op het volgende uit:
f'(x)=3x2ln(3x)+x3·1/3x
f'(x)=3x2ln(3x)+x3/3x
f'(x)=3x2ln(3x)+1/3x2
Het antwoord is echter:
f'(x)=3x2ln(3x)+x2
Kunt u mij uitleggen hoe ze op dit antwoord komen?
Alvast bedankt!

evita
Leerling bovenbouw havo-vwo - vrijdag 3 september 2010

Antwoord

Je vergeet de kettingregel bij de afgeleide van ln(3x). De afgeleide van ln(3x) is:

$
\eqalign{
& f(x) = \ln (3x) \cr
& f'(x) = \frac{1}
{{3x}} \cdot 3 = \frac{1}
{x} \cr}
$

Toch?
Dan zou het moeten lukken!

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 3 september 2010



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3