De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Re: Re: Focus en raaklijn ellips

 Dit is een reactie op vraag 62620 
Hallo Koen,

Het antwoord is de 2 vergelijkingen op te lossen naar m (eliminatie zoals U zegt)en dan krijg ik:
Raaklijn t: y=mx+b2/q en normaal Q:y=(-x+c)/m
(yq-b2)/x=(-x+c)y
y2q-b2y=-x2+cx.
Het moet nui toch de bedoeling zijn een waarde te vinden voor het punt Q(p,q), dus eigenlijk de p en de q waarde, niet ??DDeze punten dan ingeven in de vgf van de hoofdcirkel zou dan a2 moeten opleveren....Ja, sorry,ik weet niet wat er gebeurt maar ik kom er maar niet uit....
Groeten,
RIK

Rik L
Iets anders - zondag 6 juni 2010

Antwoord

Rik,
De lijnen y=mx+b2/q en y=-x/m+c/m hebben als snijpunt Q (x,y).Hoe vind je x en y.Dat gaat zo: Uit mx+b2q=-x/m+c/m volgt dat x=(cq-mb2)/(q(1+m2)).
Substitutie van deze x-waarde in een van de lijnen geeft:
y=(b2+cqm)/(q(1+m2)).Hieruit volgt dat x2+y2=(c2q2+b4)/(q2(1+m2)).
( c2=a2-b2 ).Nu jij weer.

kn
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 7 juni 2010
 Re: Re: Re: Re: Focus en raaklijn ellips 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3