De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Vergelijking van de raaklijn aan een cirkel

Ik moet een aantal keer de vergelijking van de raaklijn van een cirkel geven, waarbij de vergelijking van de cirkel is gegeven, evenals het raakpunt A.
Bijvoorbeeld:
x2+y2-2x-4y+4=0, A=(1,1)

Wat ik wil doen, is eerst middelpunt M uitrekenen, om zo de vector van M naar A uit te rekenen en zo verder. Dus de vergelijking van de cirkel te ontbinden:

(x-1)2+(y-2)2=1 ®M=(-1,-2)®bijbehorende vector is (2,3)®vergelijking van de raaklijn is 2x+3y=5.

Volgens mijn antwoordblad klopt hier niets van.
Waar ga ik de mist in?

Alvast bedankt voor de hulp!

Wilma
Student hbo - vrijdag 21 augustus 2009

Antwoord

Het middelpunt van de cirkel is (1,2) en niet (-1,-2). De 'bijbehorende' vector zou dan (0,1) of (0,-1) zijn. De vergelijking van de raaklijn door A(1,1) is dan y=1. Helpt dat?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 21 augustus 2009



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3