De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bewijzen van de ene functie voldoet aan de andere

Ik moet bewijzen/laten zien dat

z = esin(x) · cos(y)

gelijk is aan:

(cos(y)/cos(x))·(z/x) - (sin(y)/sin(x))·(z/y) = z

Ik dacht om de ketting regel te gebruiken:

(z/t) = (z/x)(x/t) + (z/y)(y/t)

Maar ik kom er niet op uit, waar de cos, sin en min-teken vandaan komt snap ik. Maar niet hoe het komt dat
(cos(y)/cos(x)) en (sin(y)/sin(x)) ik dacht dat het (cos(y)·cos(x)) en (sin(y)·sin(x)) moet zijn toch?

Etienn
Student universiteit - donderdag 23 april 2009

Antwoord

z/x = esin(x).cos(y).cos(y).cos(x)
Je dient hier cos(y) als constante te behandelen en het laatste stukje van de partiële afgeleide is dan de afgeleide (naar x) van de oorspronkelijke exponent.
Als je het lastig vindt, vraag je dan maar eens af wat de afgeleide is van
bijvoorbeeld e6.sin(x).
Wanneer je nu deze uitdrukking voor z/x vermenigvuldigt met
cos(y)/cos(x), dan hou je cos2(y).z over.

Met z/y = esin(x).cos(y).-sin(y).sin(x) handel je op gelijke wijze. Het minteken is overigens veroorzaakt door de afgeleide (naar y) van cos(y). Hier wordt sin(x) als constante gezien.
Na vermenigvuldiging met sin(y)/sin(x) en aftrekking van de beide deelresultaten krijg je op grond van de stelling sin(y) + cos2(y) = 1 het gewenste resultaat z te zien.

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 24 april 2009



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3