De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Re: Distrubutiefunctie voor het gooien met een dobbelsteen

 Dit is een reactie op vraag 59084 
De distributiefunctie is de som van alle kansen tot dat punt, dus F(7)=p(7)+p(6)+p(5)+p(4)+p(3)+p(2)+p(1)
Ik ga er dus vanuit dat je op de één of andere manier een functie moet bedenken. Daartoe zul je moeten uitgaan van een bepaalde verdeling, in mijn geval dacht ik een geometrische verdeling?? waarvoor dan geldt: (n boven k)p^k (1-p)^(n-k). Maar dan moet ik de kans op succes weten, die vervolgens weer afhankelijk is van het aantal worpen dat je doet. Kortom hoe kom ik daaraan???? F is hier dus de som van alle voorgaande kansen en niet alleen p(7).

Sandra
Student universiteit - dinsdag 21 april 2009

Antwoord

Sandra,
Het blijkt dus dat p(k)=de kans datin k worpen de som van de ogen voor het eerst groter is dan 6.De verdelingen die jij geeft zijn niet bruikbaar omdat de succeskans varieert.Hoe berekenen we b.v p(3)?Bepaal de uitkomsten waarbij na 2 worpen de som van de ogen kleiner is dan 7.Deze gebruik je voor de uitkomsten die gunstig zijn voor p(3).Zo vindt je dat p(3)=70/63.Verder zij eenvoudig te vinden p(7)= 6/6^7 en p(6)=35/6^6.Voor p(4) en p(5) is wat meer rekenwerk.Zo is p(4)=105/64 en p(5)=84/65.Verder zie je dat dan
F(7)=1, wat we al eerder bedacht hadden.

kn
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 22 april 2009



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3