De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Tegenvoorbeeld voor het product van 2 gelijkmatig convergerende functierijen

Goeiedag,
Ik moet bewijzen dat twee functierijen {fn} en {gn} die beide begrensd zijn en gelijkmatig convergent op een verzameling A (reeel), een productrij voortbrengen {fn.gn} die ook gelijkmatig convergeert op A. Dat lijkt me te doen met gebruik van de definities. Maar ik moet ook een tegenvoorbeeld vinden als we de voorwaarde "begrensd zijn" laten vallen. Dus:
vind 2 rijen {fn} en {gn} beide gelijkmatig convergent op A, maar zo dat de rij van de produkten {fn.gn} NIET gelijkmatig convergeert op A. Kunt u me daarbij helpen?
Bedankt.

Rita D
Iets anders - donderdag 27 november 2008

Antwoord

Het bekendste voorbeeld is heel flauw: Neem A=(0,1] en laat fn(x)=1/n voor elke n (constante functies dus) en gn(x)=1/x (telkens dezelfde functie).

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 29 november 2008



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3