De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Lineaire DV

 Dit is een reactie op vraag 53516 
Ok bedankt, maar ik ben nu verder gaan rekenen maar dan kom ik niet uit en ik zie niet wat ik fout doe.
ik gebruik f*g-(int)f'g
f=(x2-2x) g=-1/3*e^3x
(x^2-2x)*-1/3*e^3x - (int)2x-2)*-1/3*e^3x - (int)2*-1/3*e^3x
f(x)*(fi)(x)=e^-3x*((x^2-2x)*-1/3*e^3x - (int)2x-2)*-1/3*e^3x - (int)2*-1/3*e^3x)
=((x^2)/3)+((4x)/3)+(C/e^3x)

nico
Student hbo - zondag 16 december 2007

Antwoord

Beste Nico,

Je notatie is nogal onduidelijk... Waarom een minteken bij g?

Als f(x) = x2-2x en g(x) = e3x/3, dan is f'(x) = 2x-2 en g'(x) = e3x.

Dan volgt: ò f(x)g'(x) dx = f(x)g(x) - ò f'(x)g(x) dx

Vul even zorgvuldig in en werk uit.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 16 december 2007



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3