De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bewijs oppervlakte vierhoek ABCD mbv sinus

Gegeven:
Opp. driehoek ABC=1/2·a·c·sin(B) waarbij AB=c en BC=a .
Ik wil graag het bewijs dat de oppervlakte van een vierhoek ABCD gelijk is aan het halve produkt der diagonalen maal de sinus van de hoek door de diagonalen gevormd.
En hoe kan ik uit dat bewijs een meetkundige methode afleiden om een vierhoek in een driehoek te veranderen.

Herman
Leerling bovenbouw havo-vwo - zondag 30 september 2007

Antwoord

Beste Herman,
Zie plaatje. Hoek S=$\angle$ASD=$\angle$BSC. S is snijpunt diagonalen.
Oppervalk $\Delta$ACD=1/2×AC×DD'=1/2×AC×DS×sin(S)
Oppervalk $\Delta$ABC=1/2×AC×BB'=1/2×AC×SB×sin(S)
Gevolg: oppervlak ABCD=1/2×AC×(DS+SB)×sin(s)=1/2×AC×BD×sin(s).
Als je nu in de applet (Cabri figuur) punt B naar C schuift, dan zie je dat BD samen valt met CD en AC valt smaen met AB.
De vergelijking gaat dan over in: oppervalk $\Delta$ACD=1/2×AC×CD×sin($\angle$ACD).
Is dat wat je bedoelde?

ldr
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 30 september 2007
 Re: Bewijs oppervlakte vierhoek ABCD mbv sinus 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3