Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Bewijs oppervlakte vierhoek ABCD mbv sinus

Gegeven:
Opp. driehoek ABC=1/2·a·c·sin(B) waarbij AB=c en BC=a .
Ik wil graag het bewijs dat de oppervlakte van een vierhoek ABCD gelijk is aan het halve produkt der diagonalen maal de sinus van de hoek door de diagonalen gevormd.
En hoe kan ik uit dat bewijs een meetkundige methode afleiden om een vierhoek in een driehoek te veranderen.

Herman
Leerling bovenbouw havo-vwo - zondag 30 september 2007

Antwoord

Beste Herman,
Zie plaatje. Hoek S=$\angle$ASD=$\angle$BSC. S is snijpunt diagonalen.
Oppervalk $\Delta$ACD=1/2×AC×DD'=1/2×AC×DS×sin(S)
Oppervalk $\Delta$ABC=1/2×AC×BB'=1/2×AC×SB×sin(S)
Gevolg: oppervlak ABCD=1/2×AC×(DS+SB)×sin(s)=1/2×AC×BD×sin(s).
Als je nu in de applet (Cabri figuur) punt B naar C schuift, dan zie je dat BD samen valt met CD en AC valt smaen met AB.
De vergelijking gaat dan over in: oppervalk $\Delta$ACD=1/2×AC×CD×sin($\angle$ACD).
Is dat wat je bedoelde?

ldr
zondag 30 september 2007

 Re: Bewijs oppervlakte vierhoek ABCD mbv sinus 

©2001-2024 WisFaq