De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||
|
\require{AMSmath}
Bewijs voor convergentie van een meetkundige rijIk weet dat de limiet van a voor n gaande naar plus oneindig afhangt van a. Als a1 dan is deze limiet gelijk aan plus oneindig. Nu wil ik deze stelling bewijzen voor a=2. Nu begrijp ik niet waarom dit bewijs begint met "we bewijzen eerst door volledige oinductie dat voor alle natuurlijke getallen vanaf 2 geldt : 2 tot de nde strikt groter is dan 1 + n" Wat heeft dat er mee te maken? AntwoordIk meen te begrijpen dat je wilt bewijzen dat de limiet van 2n = ¥ (als n®¥). Intuïtief is dat natuurlijk volslagen helder, maar in de wiskunde wil men zelfs van de voor de hand liggende zaken graag een 'mooi' bewijs zien.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|