De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Volume omwentelings lichaam

van de functie y= 1/(x+1)tot de macht2 maal e tot de macht x/x+1.
hiervan moet ik het volume van het omwentelingslichaam berekenen dat ontstaat wanneer de grafiek van deze functie tussen de grenzen x=0 x=oneindig gewenteld wordt om de x-as

karel
Student hbo - maandag 14 mei 2007

Antwoord

f(x)=(1/(x+1)2).exp(x/x+1)

Als je het volume van het omwentelingslichaam wilt weten, moet je dus berekenen:
I=pò{f(x)}2dx

Het lastige hierbij is om de primitieve van {f(x)}2 te vinden

{f(x)}2={(1/(x+1)2).exp(x/x+1)}2
= (1/(x+1)4).exp(2x/x+1)

{f(x)}2dx
= (1/(x+1)4).exp(2x/x+1).dx
= (1/(x+1)2).(1/(x+1)2).exp(2x/x+1).dx
= -(1/(x+1)2).exp(2x/x+1).d(1/(x+1))

Stel nu even dat 1/(x+1) = q. Dan staat er dus:
-q2.exp(2-2q).dq. Dit ziet er al iets prettiger uit. Oplossen gaat partieel. Let goed op de + en - tekens!

ò-q2.exp(2-2q).dq
= ... (reken zelf na)
= [(1/2q2+1/2q+1/4).exp(2-2q)]

Nu weer voor q, 1/x+1 substitueren:
= ...
= {(x2+4x+5)/4(x+1)2}.exp(2x/x+1)

Hiermee heb je dus de primitieve. Nu moet je alleen nog de integratiegrenzen invullen. De x=0 (ondergrens) laat zich makkelijk invullen, de x=¥ (bovengrens) is net iets lastiger.
Beschouw de componenten waaruit de primitieve is opgebouwd even apart:
lim x®¥ (x2+4x+5)/4(x+1)2
= lim x®¥ (x2+4x+5)/(4x2+8x+4). Teller en noemer door x2 delen:
= lim x®¥ (1 + 4/x + 5/x2)/(4 + 8/x + 4/x2)
= (1 + 0 + 0)/(4 + 0 + 0)
= 1/4

en lim x®¥ exp(2x/x+1) = lim x®¥ exp(2- 2/x+1) = e2

(Vergeet de factor p niet mee te nemen waar we mee begonnen waren.)

groeten,

martijn

mg
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 14 mei 2007



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3